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Abstract 

Determining the effective mass of 240Pu in a plutonium metal item can be achieved through a number of 

destructive and non-destructive assay techniques. However, these techniques have one or more 

shortcomings. These include the need for large quantities of plutonium, long measurement time, or lack of 

sufficient accuracy. While efforts have been made to mitigate these issues by estimating 240Pu quantities 

through neutron coincidence counting techniques, these estimates are subject to systematic bias, and their 

estimates are not well characterized when other factors of the annulus’ physical form and composition are 

accounted for. In this work, we expand upon these non-destructive assay techniques via the implementation 

of random forest machine learning models, which produce correction functions that augment and improve 

the effective mass estimates derived from classical leakage multiplication, singles, doubles, and triples 

multiplicity counting equations.  
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Highlights 

 Effective mass estimates using the point model and multiplicity counting models for a dataset of 

46,461 annuli are generally good, but produce significantly inaccurate estimates when working 

with sufficiently high or low mass samples 

 Using the multiplicity counting method yields the most accurate effective mass estimate on 

average, but exhibits strongest bias (i.e., at higher doubles rates, estimates tend to under-predict the 

actual effective mass); conversely, the doubles point method produces the least accurate 𝑚𝑒𝑓𝑓 

estimate on average, but is the least biased estimator. 
 Random forest regression models trained on a the original 46,461 annuli (the “training set”) were 

employed to generate correction functions, 𝐶𝑓(𝐷), which predict the degree to which the point and 

multiplicity counting models overestimate/underestimate an annulus’ effective mass and produce 

a correction factor from the doubles rate to scale the initial estimate to offset this inaccuracy. When 

applied to test set of 1,000 randomly generated annuli, these correction functions improved the 

precision with which effective mass estimates were made, reducing the variance in these estimates 
 An exponential correction factor, derived from annuli thickness and outer radius data, can greatly 

improve the precision of effective mass estimates by adjusting multiplicity counting model 

predictions. When applied to a set of 1,000 test annuli, the corrected multiplicity counting method 

estimates display an average estimated-known effective mass ratio value of 𝑟𝑒−𝑘,𝑐̅̅ ̅̅ ̅̅ ̅ = 1.005 and a 

standard deviation of 𝜎 = 0.0065. 
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1. Introduction 
 

As part Los Alamos National Laboratory’s (LANL) plutonium operations, plutonium metal is purified via 

an electrorefining process. The end product of this refinement is highly pure, annular Pu castings, which go 

on to be used in various other activities. Obtaining precise and accurate knowledge of these samples’ 

masses, namely its 240Pu contents, at this stage is highly important, as lacking this knowledge would 

undermine the success and efficacy of LANL’s nuclear material accountancy systems. While traditional 

and currently-employed assaying technique provide sufficient accuracy in Pu mass quantification, these 

approaches have their drawbacks; they either require some of the sample be destroyed to facilitate 

examination, they require large time investments, or they fail to precisely characterize abnormally large or 

small mass samples (𝑚 < 210 𝑔 and 𝑚 > 3,864 𝑔, respectively). While progress has been made to 

mitigate these issues through the works of Hauck and Henzl (2014) [1] and Krick, Geist, and Mayo (2005) 

[2], in which neutron coincidence counting techniques are coupled with neutron weighted point models to 

derive effective mass estimates, the validity of this technique has only been demonstrated for Pu samples 

in cylindrical form-factors, and cannot be readily applied to this situation. 

 

In this paper, we detail the development and application of a machine learning model which, when fed 

specific information regarding a Pu annulus’ composition and/or physical form, produces “correction 

functions”. When assessed at the annulus’ detected doubles emission (the function’s independent variable), 

this yields a correction factor, which is used to improve the accuracy and precision of the initial estimate of 

the annulus’ 240Pu effective mass, 𝑚𝑒𝑓𝑓.  

 

2. Methodology 

 

2.1. ML Estimation Using Neutron Multiplicity Counting Method 

 

The training data for this work comes from MCNP6.2 simulations of 46,461 distinct annuli, whose total 

masses fall between 100 g and 4,000 g, and who embody various combinations of height, outer radii, 

enrichment, ring thicknesses (defined as the difference between the outer and inner radii), and location (a 

surrogate parameter of an detection efficiency term within a proposed 3He neutron detector [3]). Table 1, 

below, outlines the bounds and/or discrete values the various physical parameters of the annuli may assume. 

 

  



Parameter Values Units 

Height, 𝐻 1, 2, 3, … , 11, 12 cm 

Outer Radius, 𝑅 0.4953 ≤ OR ≤ 5.08 cm 

Ring Thickness, 𝑇 0.254, 0.381, 0.508, 1.27, 2.54 cm 
240Pu Enrichment, 𝐸 0.5, 1.0, 2.0, 4.0, 6.0, 8.0 at% 

Location, 𝐿 x1, x2, x3, … , x8, xcenter - 

Density, ρ 19.86 
𝑔

𝑐𝑚3  

 

Table 1: Parameters for modeled annuli. See Figure A.1 for illustration of “Location” arrangement. 

 

The detector environment in which the annuli are modeled is comprised of a neutron multiplicity detector 

attached to the exterior of a glove box. The annulus, placed inside of the detector, atop a CLYC scintillation 

crystal, is surrounded on three sides by a total 66 3He neutron detectors (Figure 1). Each MCNP test is 

programmed to execute 3.1x106 spontaneous fissions events, uniformly distributed throughout the annulus, 

and logs the total number of neutrons captured by each of the three 3He detector tube sets via F8 capture 

tallies. 

 
Figure 1: Diagram of annulus in proposed multiplicity counter. Front view (left) and side view (right) [3]. 

 

Upon the completion of each MCNP run, the values for the following system variables are extracted from 

the MCNP output file and recorded for later use: 

 

 Detector efficiency: ε 

 Double and triple gate fractions: fd & ft 

 Single, doubles, and triples neutron capture rate: S, D, & T 

 2nd and 3rd reduced moments of the spontaneous fission neutron distribution: νs2 & νs3 

 1st, 2nd, and 3rd reduced moments of the induced fission neutron distribution: νi1, νi2, & νi3 

 

These variables are then processed using the multiplicity counting method (MCM) [5], in which the above-

listed system variables are inserted in Equations 1, 2, and 3. When evaluated, these provide coefficient 

values which can be substituted into Equation 4. Solving this cubic equation for its non-complex, real 

root(s) returns the expected net leakage multiplier for the annulus, 𝑀𝐿 [5][6][7]. 

 

 𝑎 + 𝑏𝑀𝐿 + 𝑐𝑀𝐿
2 + 𝑀𝐿

3 = 0 Eq. 1 



 

 𝑎 =
−6𝑇𝜈𝑠2(𝜈𝑖1 − 1)

𝜀2𝑓𝑡𝑆(𝜈𝑠2𝜈𝑖3 − 𝜈𝑠3𝜈𝑖2)
 Eq. 2 

 

 𝑏 =
2𝐷[𝜈𝑠3(𝜈𝑖1 − 1) − 3𝜈𝑠2𝜈𝑖2]

𝜀𝑓𝑑𝑆(𝜈𝑠2𝜈𝑖3 − 𝜈𝑠3𝜈𝑖2)
 Eq. 3 

 

 𝑐 =
6𝐷𝜈𝑠2𝜈𝑖2

𝜀𝑓𝑑𝑆(𝜈𝑠2𝜈𝑖3 − 𝜈𝑠3𝜈𝑖2)
− 1 Eq. 4 

 

 

2.2. Effective Mass Estimation 

 

The effective mass of an annulus is defined as the mass of 240Pu that would yield an equivalent neutron 

doubles rate to that produced by the combined spontaneous fission decays of 238Pu, 240Pu, and 242Pu. This 

quantity can be determined using Eq. 5, in which 𝑚238, 𝑚240, and 𝑚242 correspond to the actual mass of 
238Pu, 240Pu, and 242Pu within the annulus, respectively. In this study, this equation is used to determine a 

known effective mass, 𝑚𝑒𝑓𝑓,𝐾. This is possible given that we have exact knowledge of the annuli’s 

composition, as we defined such values in the creation of our MCNP models.  

 

 𝑚𝑒𝑓𝑓,𝐾 = 2.52𝑚238 + 𝑚240 + 1.68𝑚242 Eq. 5 

 

In practice, however, exact knowledge of an annuli’s precise mass cannot be determined without first 

assaying the sample. Thus, Eq. 5 cannot be used if perfect knowledge of the annuli’s composition is not 

assumed. In this case, other methods must be employed to estimate the value of 𝑚𝑒𝑓𝑓. In this study, three 

different approaches are employed: the singles point model (SPM) seen in Eq. 6, the doubles point model 

(DPM) seen in Eq. 7, and the MCM in Eq. 8.  

 

 

 

 𝑚𝑒𝑓𝑓,𝑆 =
𝑆

𝐹𝜀𝑀𝐿𝜈𝑠1(1 + 𝛼)
 Eq. 6 

 

 

 
𝑚𝑒𝑓𝑓,𝐷 =

2𝐷

𝐹𝜀2𝑓𝑑𝑀𝐿
2 [𝜈𝑠2 +

𝑀𝐿 − 1
𝜈𝑖1 − 1 𝜈𝑠1𝜈𝑖2(1 + 𝛼)]

 
Eq. 2.7 

 

 

 

 𝑚𝑒𝑓𝑓,𝑀 =
[

2𝐷
𝜀𝑓𝑑

−
𝑀𝐿(𝑀𝐿 − 1)𝜈𝑖2𝑆

𝜈𝑖1 − 1 ]

473𝜀𝑀𝐿
2𝜈𝑠2

 
Eq. 8 

 

These models are entirely dependent on metrics derived from the radiological signature of the annulus and 

the performance of the detector it is measured with. In using these approaches, estimates of the sample’s 

𝑚𝑒𝑓𝑓 can be made when its exact isotopic composition and mass is unknown. For these calculations, the 

specific spontaneous fission rate, 𝐹, is taken as 473 fissions per second per gram, and the (α,n) to 

spontaneous fission neutron ratio, 𝛼, is assumed to be zero, given that the materials being examined in this 



study are highly-pure plutonium samples with small americium impurities. Additionally, the 𝜀 term refers 

to the detector’s neutron detection efficiency at the location of the item during assay. 

 

In addition to simply finding the values of 𝑚𝑒𝑓𝑓,𝑆, 𝑚𝑒𝑓𝑓,𝐷, and 𝑚𝑒𝑓𝑓,𝑀, we also evaluate the ratio of these 

values relative to the 𝑚𝑒𝑓𝑓,𝐾 of the sample, 𝑟𝑒−𝑘. Finding these ratios serves two purposes; the estimated-

known ratio can be used to benchmark the accuracy of the initial estimate, and the value of 𝑟𝑒−𝑘 can be 

leveraged to adjust the estimated 𝑚𝑒𝑓𝑓 by some correction factor such that its value more closely aligns 

with 𝑚𝑒𝑓𝑓,𝐾. 

 

Upon executing the above-mentioned MCNP tests and assessing the equations for each annulus in our 

sample group, a dataset of actual and estimated values for ML and meff is created for a multitude of possible 

annuli configurations. The actual values contained within this dataset will later serve as benchmarks by 

which the accuracy of the estimated leakage multiplier and effective mass values will be judged. 

 

2.3. Correction Function Generation 

 

As illustrated in Figures B.1, B.2, and B.3, point model-derived effective mass estimates for annuli are 

imperfect, and exhibit a pattern of overestimating 𝑚𝑒𝑓𝑓 at lower doubles rates, and underestimating 𝑚𝑒𝑓𝑓 

at higher doubles rates. Additionally, the degree to which this behavior is pronounced is an artifact of the 

physical parameters of the annulus (Figure B.4). In all, to get better effective mass estimates, one must 

account for the effects the item’s geometry have on its neutronics and radiological emissions, and correct 

for these behaviors.  

 

To do so, this study employs correction functions and correction factors. Correction functions are functions 

which predict the value of a correction factor, 𝑐𝑓, which itself is some value that scales the value estimated 

for 𝑚𝑒𝑓𝑓 of an annulus such that it more closely aligns with 𝑚𝑒𝑓𝑓,𝐾 (i.e., 𝑟𝑒−𝑘 approaches unity). These 

functions are produced in five forms:  

 

 2nd order polynomial: 𝑓𝑐 = 𝐴 ⋅ 𝑥2 + 𝐵 ⋅ 𝑥 + 𝐶 

 Linear: 𝑓𝑐 = 𝐴 + 𝐵 ⋅ 𝑥 

 Power-law: 𝑓𝑐 = 𝐴 ⋅ 𝑥𝐵 

 Exponential: 𝑓𝑐 = 𝐴 ⋅ 𝑒𝑥𝐵 

 Logarithmic: 𝑓𝑐 = 𝐴 + 𝐵 ⋅ ln (𝑥) 

 

Each correction function predicts the estimated-known 𝑚𝑒𝑓𝑓 ratio trend as a function of doubles rates. 

Additionally, the value of the correction functions’ coefficients are determined by the values of the annuli’s 

physical parameters. 

 

2.4. Random Forest Models 

 

To determine the value of coefficients governing these correction functions, random forest regression is 

performed.  An initial set of 93 parameter-defined random forest models (RFMs) is formed.  The size of 

this set of reflects the number of unique combinations that can be formed from selecting on of the three 

estimator model, one of the five correction function forms, and a combination of any number of the annulus 

parameter (not parameter values) detailed in Table 1.  For example, a single RFM will be produced to 

analyze SPM-based 𝑚𝑒𝑓𝑓 estimates that are corrected via a logarithmic function trained on annulus 

thickness, enrichment, and location data. 

 



For each RFM, the 46,461 annuli in the training set are then organized into subsets, in which each annulus 

in the subset shares a common value for the annulus parameters the correction function is being trained on 

(Figure 2). Then, for each subset, the 𝑟𝑒−𝑘 value as determined by the chosen model (SPM, DPM, or MCM) 

of each annulus in the subset is plotted against its measured doubles rate, 𝐷, and a best-fit curve matching 

the function type specified by the correction function is calculated (Figure 3). The coefficients governing 

this curve, as well as the parameter values which define the subset, are recorded together. If such a curve 

cannot be created (say due to an insufficient number of data points being available for analysis), the process 

is stopped, the current RFM is removed from the set, and analysis on the next RFM begins. 

 

 
Figure 2: Training annulus organization scheme for RFM training. 

 

 
Figure 3: Correction function for thickness, enrichment, and location separated annuli using SPM 

estimates. All depicted annuli have the following properties: 𝑡 = 2.54 cm, enrichment = 8%, located at x2. 

 

Once every subset has been analyzed for a given correction function, a 100 decision tree random forest 

regression is performed to study how the best-fit coefficients change as the annulus parameters change. In 

all, this process yields 87 RFM which, theoretically, can be used to characterize the form of a correction 

function which produces a correction factor to improve the estimate of an annulus’ effective mass. 

 



After training the random forest models, a test set of 1,000 randomly generated annuli is produced such that 

the physical parameters present in this set are representative of those detailed in Table 1, but are not found 

in the training annulus set. For each annulus in this set, the random forest models are used to predict the 

correction factor for each individual annulus. This correction factor is then used to adjust the initial 𝑚𝑒𝑓𝑓 

estimated value for the annulus (Eq. 9), producing a corrected effective mass estimate, 𝑚𝑒𝑓𝑓,𝐶 . An 

additional corrected estimate-known effective mass value, 𝑟𝑒−𝑘,𝐶, is determined by simply taking the ratio 

of the corrected effective mass estimate and the known effective mass (Eq. 10). The collection of these 

values are then used to characterize the precision and accuracy of the individual random forest model’s 

estimates, thus producing objective means by which the random forest models can be assessed. 

 

𝑚𝑒𝑓𝑓,𝐶 = 𝑐𝑓 ⋅ 𝑚𝑒𝑓𝑓 Eq. 9 

 

𝑟𝑒−𝑘,𝐶 =
𝑚𝑒𝑓𝑓,𝐶

𝑚𝑒𝑓𝑓,𝐾
 Eq. 10 

 

3. Results 

 

3.1. Initial Estimator Performance 

 

In comparing the initial, non-corrected estimated-known 𝑚𝑒𝑓𝑓 ratios produces by the SPM, DPM, and 

MCM models when applied to the test annuls datasets, the SPM method yields the most accurate initial 

effective mass estimates. On average, the estimated 𝑚𝑒𝑓𝑓 found using the SPM model is 4.1% greater than 

its 𝑚𝑒𝑓𝑓,𝐾 counterpart. Similarly, both the DPM and MCM also tend to overestimate an annulus’ effective 

mass, with average estimated-known ratios of 6.3% and 6.7% above unity, respectively. 

 

Estimator 𝑥̅  Min. Max. 𝜎  

SPM 1.041 0.950 1.132 0.0234 

DPM 1.063 0.904 1.580 0.0443 

MCM 1.067 0.797 1.654 0.0529 

 

Table 2: 𝑟𝑒−𝑘 statistics for effective mass estimator models. 

 

As illustrated in Figure 4, the MCM model-derived dataset, in addition to demonstrating the strongest bias, 

exhibits the largest standard deviation of 𝑚𝑒𝑓𝑓 estimates. The DPM and SPM methods produce improved 

results, with standard deviation values 16% and 56% smaller than that calculated for the MCM model, 

respectively. In their most extreme cases, the SPM, DPM, and MCM models yield 𝑚𝑒𝑓𝑓 estimates 13%, 

58%, and 65% larger than the true effective mass of an annulus. This inaccuracy also manifests itself via 

underestimated 𝑚𝑒𝑓𝑓 values – SPM, DPM, and MCM models can underestimate the effective mass by as 

much as 5%, 10%, and 20%, respectively. 

 



 
Figure 4: Histogram (500 bins) of 𝑟𝑒−𝑘 for all annuli using SPM, DPM, and MCM models. Plots are 

normalized such that the area under each curve is equal to one. 

 

3.2. Random Forest Model and Correction Function Performance 

 

Considering that the SPM, DPM, and MCM estimators are already capable of producing relatively accurate 

estimates of 𝑚𝑒𝑓𝑓 for a wide array of annuli. The need for correction functions arises from a need to reduce 

the variance within 𝑚𝑒𝑓𝑓 estimates due to the unaccounted for effects of the annulus’ changing physical 

factors. However, the choice of which factors to isolate and which to ignore is not arbitrary. Correction 

functions which focus on too broad of an annulus subset (i.e., when only differentiating annuli by one 

physical parameter) have difficulty discerning meaningful trends within the 𝑚𝑒𝑓𝑓-𝐷 relationship, and 

therefore only modestly improve accuracy and precision. However, a similar problem is encountered when 

too small of a subset of annuli is examined; when deriving correction functions relative to four or five 

physical parameters, meaningful trends between said parameters and 𝑟𝑒−𝑘 cannot be established, and the 

resulting correction functions. 

 

The results of each RFM predictions as applied to the test annuli dataset were aggregated and analyzed to 

generate the average, minimum, and maximum corrected estimate-known effective mass ratio, 𝑟𝑒−𝑘,𝐶, 

values produced by the model. Standard deviations values for the sets of 𝑟𝑒−𝑘,𝐶 values were also calculated. 

For these identified metrics, all 87 random forest models were ranked by how well they performed under 

the following criteria; average 𝑟𝑒−𝑘,𝐶 values closest to 1, lowest maximum values of 𝑟𝑒−𝑘,𝐶, and which 

distribution of 𝑟𝑒−𝑘,𝐶 values yielded the smallest standard deviation. The models which best satisfied these 

criteria are identified in Table 3. 

 

  



Metric of Best 

Performance Correction Function 𝑥̅  Min Max σ  

Average 𝑟𝑒−𝑘 value Polynomial, MCM, 
𝑓𝑐

(𝐻, 𝑅, 𝐸, 𝐿) 
1.001 0.936 2.046 0.0478 

Maximum 𝑟𝑒−𝑘 value Polynomial, MCM, 𝑓𝑐
(𝑇, 𝐸) 1.032 1.004 5.679 0.1757 

Smallest σ Exponential, MCM,  𝑓𝑐(𝑇, 𝑅) 1.005 0.883 1.007 0.0065 

 

Table 3: Corrected 𝑟𝑒−𝑘 statistics for effective mass estimator models.  Correction function variables refer 

to the variables outlined in Table 1 – annulus height, 𝐻, thickness, 𝑇, outer radius, 𝑅, nominal 

enrichment, 𝐸, and location within the detector, 𝐿. 

 

The above-listed criteria represent how different models can be used to pursue different material 

accountancy goals. For example, if one prioritizes effective mass estimation accuracy over uncertainty, then 

a polynomial correction function, trained on annulus height, outer radius, enrichment, and location data, 

and used to augment MCM-derived 𝑚𝑒𝑓𝑓 values would be the preferred correction function model – this 

model, on average, yields the most accurate 𝑚𝑒𝑓𝑓 estimates. If, by contrast, an extremely conservative 𝑚𝑒𝑓𝑓 

estimate is desired (say, a scenario in which underestimating the effective 240Pu content of an annulus is 

unacceptable), the use of a polynomial correction function, trained on annulus thickness and enrichment 

data, should be used to refine initial MCM-derived estimates. The third criteria, the smallest standard 

deviation, is most useful when precise estimates of an annulus’ effective mass is of utmost importance, and 

uncertainty in said measurement must be minimized.   

 

In all, the identified correction functions, and their RFMs, demonstrate the ability to more accurately 

estimate 𝑚𝑒𝑓𝑓 when appended to initial MCM estimates than any of the original point or multiplicity 

counting models can achieve (Figure 5). Additionally, of the three correction functions, both the four-factor 

MCM polynomial and two-factor MCM exponential functions produce estimates with vastly improved 

precision.  As detailed in Table 4, 𝑚𝑒𝑓𝑓,𝑐 estimates vary from 𝑚𝑒𝑓𝑓,𝑘 by only -1.9/+2.4 % and -3.1/+0.7 % 

in 99% of all cases.   

 
Correction Function 𝑃(𝑟𝑒−𝑘 > 𝑥) = 0.995 𝑃(𝑟𝑒−𝑘 < 𝑥) = 0.995 𝛿𝑥 

Polynomial, MCM, 𝑓𝑐
(𝐻, 𝑅, 𝐸, 𝐿) 0.981 1.024 0.043 

Polynomial, MCM, 𝑓𝑐
(𝑇, 𝐸) 1.004 2.117 1.113 

Exponential, MCM,  𝑓𝑐(𝑇, 𝑅) 0.969 1.007 0.038 

 

Table 4: Confidence interval values for correction function performance. 

 

 

 



 
Figure 5: Histogram (500 bins) of all 𝑟𝑒−𝑘 values from both corrected and uncorrected datasets. Plots are 

overlaid to highlight the increased precision of the corrected estimates. A more detailed plot of the 

isolated correction function curves can be found in Figure B.5. 

 

4. Conclusions 

 

Estimating the effective mass of 240Pu in Pu metal samples via existing point model and multiplicity 

counting models is a broadly generally accurate, yet imperfect practice. Factors, such as the physical form 

and enrichment of the sample, are not directly accounted for in these calculations, therefore allowing 

imprecision to manifest itself in the estimate. On average, this leads to the 𝑚𝑒𝑓𝑓 being approximately 1% 

higher than the actual effective mass of the sample. However, for sufficiently large or low activity samples, 

𝑚𝑒𝑓𝑓 estimates may underestimate the actual effective mass by as much as 46% or overestimate by 18%. 

 

In this study, we demonstrate a technique for mitigating this issue in which existing 𝑚𝑒𝑓𝑓 estimation 

processes are adapted to include correction factors. In training a random forest model to predict the degree 

to which existing effective mass calculations strays from truth using the physical parameters of the sample 

being assayed as input, the imprecision and inaccuracy of the initial effective mass estimate can be 

corrected, producing 𝑚𝑒𝑓𝑓 estimates for samples which more closely align with their true values. As 

revealed by the results outlined in this paper, a MCM-produced 𝑚𝑒𝑓𝑓 estimate adjusted by a correction 

factor calculated with an exponential correction function trained on annulus thickness and outer radius data 

performs this task the most successfully. Using this approach on the test set explored in this study, the 

average 𝑟𝑒−𝑘 value remained within 1% of unity, and the standard deviation of estimated effective masses 

relative to the known effective mass was reduced to 0.0065, constituting a 72%-98% improvement relative 

to the un-corrected singles point, doubles point, and multiplicity counting models. While this performance 

is comparable to the four-factor MCM polynomial correction function, the better precision coupled with 

the reduced tendency to overestimate the annulus’ 𝑚𝑒𝑓𝑓 by such relatively large factors make the two-

factor exponential MCM correction function the preferred choice. 
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Appendix A:  

 
Figure A.1: Annulus locations within blister box. View from above. 

 

Radius 

Number 

Outer Radius (cm) 

t = 0.254 

cm 

t = 0.381 

cm 

t = 0.508 

cm 

t = 1.270 

cm 

t = 2.540 

cm 

r1 0.49530 0.61595 0.73660 1.46050 2.66700 

r2 0.73660 0.85090 0.96520 1.65100 2.79400 

r3 0.97790 1.08585 1.19380 1.84150 2.92100 

r4 1.21920 1.32080 1.42240 2.03200 3.04800 

r5 1.46050 1.55575 1.65100 2.22250 3.17500 

r6 1.70180 1.79070 1.87960 2.41300 3.30200 

r7 1.94310 2.02565 2.10820 2.60350 3.42900 

r8 2.18440 2.26060 2.33680 2.79400 3.55600 

r9 2.42570 2.49555 2.56540 2.98450 3.68300 

r10 2.66700 2.73050 2.79400 3.17500 3.81000 

r11 2.90830 2.96545 3.02260 3.36550 3.93700 

r12 3.14960 3.20040 3.25120 3.55600 4.06400 

r13 3.39090 3.43535 3.47980 3.74650 4.19100 

r14 3.63220 3.67030 3.70840 3.93700 4.31800 

r15 3.87350 3.90525 3.93700 4.12750 4.44500 

r16 4.11480 4.14020 4.16560 4.31800 4.57200 

r17 4.35610 4.37515 4.39420 4.50850 4.69900 

r18 4.59740 4.61010 4.62280 4.69900 4.82600 

r19 4.83870 4.84505 4.85140 4.88950 4.95300 

r20 5.08000 5.08000 5.08000 5.08000 5.08000 

Table A.1: Outer radius number key and values by annulus ring thickness. 

  



Appendix B: Supplemental Plots 

 

 
Figure B.1: Uncorrected SPM 𝑟𝑒−𝑘 values. The black line symbolized perfect 𝑚𝑒𝑓𝑓 estimate relative to 

the known value. 

 

 
Figure B.2: Uncorrected DPM 𝑟𝑒−𝑘 values. The black line symbolized perfect 𝑚𝑒𝑓𝑓 estimate relative to 

the known value. 

 



 
Figure B.3: Uncorrected MCM 𝑟𝑒−𝑘 values. The black line symbolized perfect 𝑚𝑒𝑓𝑓 estimate relative to 

the known value. 

 

 
Figure B.4: Uncorrected SPM 𝑟𝑒−𝑘 values as a function of the detected doubles rate, 𝐷, for all training 

annuli. As the sections of solid reveal, 𝑚𝑒𝑓𝑓 estimates are noticeably biased, either high or low, based on 

where within the detector the annulus is placed (i.e., its “x location”). 

 



 
Figure B.5: Histogram (500 bins) of corrected 𝑟𝑒−𝑘 values from highlighted correction functions as 

described in Table 3. Plots are normalized such that the area under each curve is equal to one. 


